If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-8z-18=0
a = 1; b = -8; c = -18;
Δ = b2-4ac
Δ = -82-4·1·(-18)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{34}}{2*1}=\frac{8-2\sqrt{34}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{34}}{2*1}=\frac{8+2\sqrt{34}}{2} $
| -46=x+26 | | (10x-22)=(3x+20) | | 40+25+0.55x=35+0.65 | | (7r+4)^2=-28 | | 28n=85 | | 11x+41+3=5 | | 20-6x=-4+8x | | 19x-2+16x+2=106 | | 7.4x-4.3(x-1)=7.7 | | 7x+12=0.5(14x+24) | | 2m-5=12-9m | | 2(2w+w)=60w | | J(-1)=2x+9 | | 2(2w+w)=60 | | 6(2n+6)=84 | | x-4.5=1.25 | | 25+50+x=180 | | 5z+10=-10-5z | | 6-4z=2z+9 | | 40-5(7-x)=(X+1) | | 2x+17=10x-5 | | 150m-100m+48750=50500-200m | | 4.2+3x/9=0.6 | | 40-20x=24= | | 9x=6-6x=6 | | 91+t-15+1-20=180 | | 2x+x-2+32=180 | | 6u+3u+63=180 | | 55+(19.5x)=250 | | 30+9w+6w=180 | | 43+45+4x=180 | | 150m-100m+48000=50250+200m |